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Space-variant geometrical phases in focused
cylindrical light beams
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We show that the depolarization caused when light is focused with a high-numerical-perture lens is accom-
panied by a space-variant geometrical phase. This phase results in the formation of modes with helicities
and phase singularities that differ from those of the original beam. We show that this effect can be explained
as a transverse shift of the rays, which is reminiscent of the recently discovered optical Hall–Magnus effect.
Our results show that the asymmetric focal spot associated with the focus of linearly polarized light can be
explained through geometrical effects. © 2007 Optical Society of America
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It is well established that optical beams can carry an-
gular momentum [1]. Recent studies have shown that
in some instances the trajectory of a light beam can
be affected by its angular momentum. This is because
of a Berry phase that is added to the optical rays as
they traverse different paths in momentum space
[2,3] as the beam propagates through either an inho-
mogeneous medium or medium transitions. In some
cases, this phase leads to the optical Hall effect
(OHE) [2], in which circularly polarized beams un-
dergo transverse shifts when refracted, and to weak
anisotropy when a beam propagates in a smoothly in-
homogeneous medium [3]. In this Letter we show
how geometrical phases are manifested in tightly fo-
cused axisymmetric beams and how these phases can
be interpreted through an effect that is analogous to
the OHE.

For this analysis we consider a paraxial polarized
beam propagating along the z axis with an electric
field of the form

E��,�,z� = ��

�
�E0���eim�e−ikz,

where � is the radial coordinate around the optical
axis, � is the polar coordinate in the plane perpen-
dicular to the beam axis, m is the topological charge,
k is the wavenumber, and �� /�� is a complex unit vec-
tor representing the polarization of the beam.

Initially we assume that the beam is linearly polar-
ized ��=1,�=0� and that it is focused through a lens
with a numerical aperture of sin �. The electric field
in the image space of the lens can be found by using
the Debye approximation [4,5], which with applica-
tion of some trigonometry and identities relating to
Bessel functions of the first kind takes on the form
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In Eq. (1), A is a constant relating to the intensity of
the beam, and

Im�u,v� = �
0
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�
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Here u and v represent coordinates perpendicular
and parallel to the optical axis in the image space, re-
spectively, as defined in [5]. Note that the integration
in Eqs. (2) is performed over the entire aperture of
the lens and that � is a function of � as defined in [5].
Analysis of Eqs. (1) and (2) shows that, in addition to
a term with topological charge, m, the field in the im-
age space also comprises terms with topological
charges m−2,m−1,m+1,m+2. In the case of an in-
cident plane wave �m=0�, Im+1=I1=−I−1=−Im−1 and
Im+2=I2=I−2=Im−2. Consequently the field in Eqs. (2)
reduces to
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which yields the well-known elongated focal spot as-
sociated with the focusing of linearly polarized beams
[5]. When the incident beam carries a topological
charge of m= ±1, ±2, the field in the image space
comprises a component with topological charge m=0,

which leads to anomalous bright centers in the fo-
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cused beam as previously reported for Laguerre–
Gauss beams [6].

To gain insight into the origin of the terms Im±1,m±2
we consider the case of an incident beam with circu-
lar polarization. Using Eqs. (1) and (2) and following
the logic presented in a previous publication on the
tight-focusing of circularly polarized light [7] yields
the electric field in the image space

E = − im+1A��
1

i

0
�Imeim� + �

1

− i

0
�Im+2ei�m+2��

− 2i�
0

0

1
�Im+1ei�m+1��. �3�

The focused beam can be decomposed into three com-
ponents, each with a uniform polarization: a compo-
nent with the same topological charge and helicity as
the original beam, a component with opposite helicity
and a topological charge of m+2, and a component
linearly polarized along the z axis with a topological
charge of m+1. This decomposition is illustrated in
Fig. 1, which shows the electric energy density in the
focal plane for incident beams with different vortici-
ties and ellipticities. We note that the decomposition
shown in Eq. (3) yields three components with or-
thogonal polarizations, each with a different topologi-
cal charge associated with their phase. However,
l+�=m for each of these components. For any axi-
symmetric beam, l+� is equal to the angular momen-
tum flux [8] through any plane perpendicular to the
optical axis. This suggests that the spiral phases
with topological charges m+1, m+2 shown in Eq. (3)
are in some sense connected to the conservation of
angular momentum flux in the system.

The observation that l+�=m for the three terms in
Eq. (3) explains the form of the field when linearly
polarized light is focused. Linearly polarized light is

Fig. 1. Electric energy density associated with the left-
hand polarized component (first row), the right-hand polar-
ized component (second row), and the axial component
(third row) within the focal spots of a 0.9 NA lens focusing
left-hand polarized beams with different topological
charges. Note that the left-hand polarized component typi-
cally contains about 100 times more energy than the right-
hand polarized component and about 10 times more energy

than the axial component.
the superposition of two components with opposite
helicities. Focusing of the right-hand polarized com-
ponent ��=1� leads to a term with topological charge
m+2 and �=−1, and focusing of the component with
left-hand circular polarization ��=−1� leads to the
term with topological charge m−2 and �=1. Hence
the asymmetry of the focal spot when linearly polar-
ized light is focused can be predicted simply by en-
forcing a change in polarization and requiring that
the total angular momentum flux of each component
in the beam �l+�� be conserved.

The accumulated phase associated with a polarized
ray can arise from two sources: (a) the optical path
that the ray traverses and (b) a geometrical contribu-
tion that arises from the path that the ray traverses
in momentum space due to a change in the medium
[3]. To establish that the spiral phases on the three
components of Eq. (3) are of a geometrical origin, we
calculate the phase between the field at two points in
some plane perpendicular to the optical axis in the
image space. For simplicity we choose two points lo-
cated on the same circle around the optical axis (at
points r�1= �r0 ,0 ,z0�, r�2= �r0 ,� ,z0�) and analyze the
case of m=0. Since the fields at the two points of in-
terest do not have the same polarization, we measure
the phase by using Pancharatnam’s definition of
phase: 	p=arg�E�r�1� ,E�r�2�� [9], where �� denotes an
inner product and E�r�1� and E�r�2� are the electric
fields at two different points on the wavefront. The
calculation yields

	p = arg�E�r,0�,E�r,	��

= � − tan−1� �I0
2 − I2

2�sin�

�I0
2 + I2

2�cos� + 2I1
2�.

Hence there is a nonzero phase between the fields at
these two points. However, symmetry dictates that
the optical paths traversed by two rays passing
through these points are equal. Furthermore, a short
calculation reveals that the phase between two
points on either side of the exit pupil along a single
ray is equal to the optical path traversed by the ray.
Therefore the phase between the fields at two differ-
ent points in the same plane after the exit pupil must
arise from a geometrical effect. In particular, it must
arise from the different geometrical transformations
(rotations) that the two rays undergo when they are
rotated at the lens interface and from the non-
Abelian nature of the rotation group. This suggests
that the formation of the modes with phase singulari-
ties m±2,m±1 is the result of a geometrical effect,
which is associated with the bending of the rays. We
note that space-variant geometrical phases have
been discussed previously in the context of space-
variant polarization state manipulations [9], but not
in the context of tight focusing.

An alternative approach to defining the phase of a
vector field is to use the rectifying phase. According
to basic theory [10], the polarization of a complex
three-dimensional field can be written as E�r�
=exp�i
�r���A�r�+ iB�r�	, where A�r� and B�r� are

real vectors that are orthogonal to each other, and
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�r�=1/2arg�E ·E� is the rectifying phase. Calculat-
ing this phase for the field shown in Eq. (3) (incident
circular polarization) yields 
�r�= �m+1��= �l+���.
Thus, the vorticity of the rectifying phase of the fo-
cused beam is equal to the sum of vorticity and helic-
ity of the incident beam. Figure 2 shows color maps of
2
�r�=arg�E ·E� at the focal plane for focused beams
with different incident vorticities and different helici-
ties. It is interesting to note the singularities in the
rectifying phase that appear when the incident beam
is not circularly polarized.

As a final point we show how the beam shape in
the image space can be interpreted by using a de-
scription that is reminiscent of the recently discov-
ered OHE [2,3]. The OHE predicts that when a circu-
larly polarized ray (photon) alters its direction of
propagation, it must undergo a transverse shift to
conserve angular momentum. At the lens, the circu-
larly polarized ray (photon) is refracted, and its spin-
vector becomes a superposition of two orthogonally
polarized states with opposite spin, and a degeneracy
associated with polarization is removed. Conse-
quently a single ray splits into two rays with opposite
helicities. Conservation of angular momentum flux
occurs if the total angular momentum associated
with each of these rays is conserved. Hence the ray
with flipped helicity undergoes a transverse shift of
�L, which is manifested as an aberration �� in the
focal plane as shown in Fig. 3. The change in angular
momentum associated with this transverse shift is
the vector product of the shift vector and the wave
vector, k� , which by conservation of angular momen-
tum must equal 2 (because the spin of the ray has
flipped from 1 to −1). Hence �L� �k� =�L ·2� /=2,
which yields �L= /�. Tracing all of the shifted rays
reveals that they intersect the focal plane on a circle
with a radius of  /� around the focal spot. This yields
an aberration, ��=2��L /=2. Integrating this aber-
ration along a path connecting two points in the focal
plane reveals that it is equivalent to a spiral phase of
2�, which is consistent with the form of the beam de-

Fig. 2. Color maps showing 2
�r�=arg�E ·E� within the fo-
cal spots of a 0.9 NA lens focusing beams with left-hand cir-
cular, right-hand circular, and linear polarizations (rows)

and vorticities m=0,1,2 (columns).
picted in Eq. (3). Thus the formation of components
with helicities m±2 can be described through a
transverse shift in ray position that is reminiscent of
the OHE.

To conclude, this Letter extends previous work on
the tight focusing of beams carrying angular momen-
tum [7,11] and provides a geometrical mechanism
that can explain the structure of the beams in the im-
age space. This Letter presents a link between previ-
ous experimental observations on the anomalous be-
havior of focused light and the OHE. In particular it
demonstrates that the classical result regarding the
elongated focal spot when linearly polarized plane is
focused [5] can be explained through an OHE-like
phenomenon.
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